Jadibukan merupakan rumus pasti. Karena data sampel pada contoh tersebut berada di cell B5 sampai B11 maka kita masukkan (B5:B11). Keterangan : a. STDEV mengasumsikan bahwa argumen adalah contoh dari populasi. Jika data mewakili seluruh populasi, untuk menghitung deviasi standar menggunakan STDEVP. b. Standar deviasi dihitung memakai metode Koefisienvariasi adalah perbandingan antara simpangan standar dengan nilai rata-rata yang dinyatakan dengan persentase. Koefisien variasi berguna untuk melihat sebaran data dari rata-rata hitungnya. Jangkauan antar kuartil dari sekelompok data 16 7 10; Materi ukuran penyebaran data; Ukuran gejala pusat data belum dikelompokkan; Simpangan Umar, 2003). Pengumpulan data primer ini melalui pembagian kuisioner kepada responden yang telah ditentukan karakteristiknya. Jenis data yang digunakan dalam penelitian ini adalah Data Primer. 3.4 Populasi Dan Sampel 3.4.1 Populasi Populasi adalah wilayah generalisasi yang terdiri dari obyek atau subyek yang cash. Statistik adalah proses dimana data dikumpulkan dan dianalisis. Koefisien variasi dalam statistik menjelaskan sebagai rasio standar deviasi terhadap rata-rata aritmatika, misalnya ungkapan standar deviasi adalah 15% dari rata-rata aritmatika adalah variasi koefisien Berapakah Koefisien variasi? Koefisien variasi adalah ukuran variabilitas relatif. Koefisien variasi adalah rasio simpangan baku terhadap rata-rata. Sangat berguna jika kita ingin membandingkan hasil dari dua penelitian atau tes yang berbeda yang terdiri dari dua hasil yang berbeda. Misalnya, jika kita membandingkan hasil dari dua pertandingan berbeda yang memiliki dua metode penilaian yang sama sekali berbeda. Seperti jika sampel X memiliki CV sebesar 15% dan sampel Y memiliki CV sebesar 30%, maka dapat dikatakan bahwa sampel Y memiliki lebih banyak variasi relatif terhadap rata-ratanya. Ini membantu kami menyediakan alat yang relatif sederhana dan cepat yang membantu kami membandingkan data dari seri yang berbeda. Formula untuk menghitung koefisien variasi Koefisien Variasi = Standard Deviasi / Mean × 100 Dalam simbol CV = SD/x̄ × 100 Langkah-langkah mencari Koefisien Variasi Untuk langkah menghitung koefisien variasi mari kita lihat contohnya. Contoh Dua anak laki-laki sedang bermain kriket dan sepak bola skor yang dicetak oleh anak laki-laki tersebut adalah sebagai berikut- Sepak bola Jangkrik Berarti 24 46 SD 13 35 Langkah 1 Sekarang, bagi standar deviasi dengan rata-rata untuk sampel 1 sepak bola 13/24 = 0,5416 Langkah 2 Sekarang, kalikan langkah 1 dengan 100 0,5416×100=54,16% Langkah 3 Sekarang untuk sampel 2, bagi standar deviasi dengan rata-rata 35/46=0,7608 Langkah 4 Sekarang, kalikan langkah 2 dengan 100 0,7608×100= 76,08% Koefisien Variasi dalam Konteks Keuangan Ini membantu kita dalam proses pemilihan investasi karena itu penting dalam hal keuangan. Dalam matriks keuangan, ini menunjukkan kepada kita rasio risiko terhadap imbalan yang berarti di sini standar deviasi/volatilitas menunjukkan risiko investasi dan rata-rata ditunjukkan sebagai imbalan yang diharapkan dari investasi. Para investor di perusahaan mengidentifikasi rasio risiko terhadap imbalan dari masing-masing sekuritas untuk mengembangkan keputusan investasi. Dalam hal ini, koefisien yang rendah tidak menguntungkan ketika pengembalian yang diharapkan rata-rata di bawah nilai nol Rumus perhitungan koefisien variasi dalam konteks keuangan Koefisien variasi = /μ × 100% Di mana, – standar deviasi μ – rata-rata Contoh Soal Soal 1 Standar deviasi dan rata-rata data masing-masing adalah 9,7 dan 17,8. Temukan koefisien variasi. Penyelesaian SD/ = 9,7 rata-rata/μ = 17,8 Koefisien variasi = /μ × 100% = 9,7/17,8 × 100 Koefisien variasi = 54,4% Soal 2 Standar deviasi dan koefisien variasi data masing-masing adalah 2,5 dan 36,7. Carilah nilai rata-ratanya. Penyelesaian CV=36,7 SD/= 2,5 Rata-rata/x̄=? CV = /x̄ × 100 36,7 = 2,5 / x̄ ×100 x̄ = 2,5/36,7×100 x̄ = 6,81 Soal 3 Jika rata-rata dan koefisien variasi data masing-masing adalah 24 dan 56, maka tentukan nilai standar deviasinya? Penyelesaian CV=56 SD/=? Rata-rata/x̄= 24 CV= /x̄ × 100 56 = / 24 × 100 = 24×56/100 = 13,44 Standar deviasi adalah 13,44 Soal 4 Rata-rata dan standar deviasi nilai yang diperoleh 40 siswa dari suatu kelas dalam tiga mata pelajaran Matematika, Bahasa Inggris dan ekonomi diberikan di bawah ini. Subjek Berarti Deviasi Standar Matematika 56 11 Bahasa inggris 78 16 Ekonomi 69 13 Manakah dari tiga subjek yang menunjukkan variasi tertinggi dan mana yang menunjukkan variasi nilai terendah? Penyelesaian Koefisien variasi untuk matematika =/x̄ × 100 =11 x̄=56 CV = 11/56×100 Koefisien variasi untuk matematika= 19,64% Koefisien variasi untuk bahasa Inggris= /x̄ × 100 =16 x̄=78 CV = 16/78×100 Koefisien variasi untuk bahasa Inggris= 20,51% Koefisien variasi untuk ekonomi= /x̄ × 100 =13 x̄=69 CV = 13/69×100 Koefisien variasi untuk ekonomi =18,84% Variasi tertinggi adalah dalam bahasa Inggris. Dan variasi terendah adalah di bidang ekonomi. Soal 5 Tabel berikut memberikan nilai rata-rata dan variansi tinggi dan berat badan siswa kelas X di suatu sekolah. Tinggi Berat Berarti 166cm 65,60 cm Perbedaan 85,70 cm 39,9kg Mana yang lebih bervariasi dari yang lain? Penyelesaian Koefisien variasi untuk ketinggian Rata-rata x̄1= 166cm, ragam 1² = 85,70 cm² Oleh karena itu standar deviasi 1 = 9,25 Koefisien variasi /x̄ × 100 = 9,25/166×100 = 5,57% Untuk ketinggian Koefisien variasi untuk bobot Rata-rata x̄2= 65,60kg , varians 2² = 39,9 kg² Oleh karena itu standar deviasi 2 = 6,3kg Koefisien variasi /x̄ × 100 = 6,3 / 65,60×100 Untuk berat = 5,57% dan = 9,54% Karena C .V2 > C .V1 , berat badan siswa lebih bervariasi daripada tinggi badan. Soal 6 Jika rata-rata dan koefisien variasi data masing-masing adalah 16 dan 40, maka tentukan nilai standar deviasinya? Penyelesaian CV=40 SD/=? Rata-rata/x̄= 16 CV= /x̄ × 100 40 = / 16 × 100 = 16×40/100 = 6,4 Soal 7 Rata-rata dan standar deviasi nilai yang diperoleh 40 siswa dari suatu kelas dalam tiga mata pelajaran Matematika, Bahasa Inggris dan ekonomi diberikan di bawah ini. Subjek Berarti Deviasi Standar Penelitian sosial 65 10 Sains 60 12 Hindi 57 14 Manakah dari tiga subjek yang menunjukkan variasi tertinggi dan mana yang menunjukkan variasi nilai terendah? Penyelesaian Koefisien variasi untuk IPS = /x̄ × 100 =10. x̄=65 CV = 10/65×100 Koefisien variasi untuk IPS = 15,38% Koefisien variasi untuk Sains = /x̄ × 100 =12 x̄=60 CV = 12/60×100 Koefisien variasi untuk sains = 20% Koefisien variasi untuk bahasa Hindi = /x̄ × 100 =14 x̄=57 CV = 14/57×100 Koefisien variasi untuk bahasa Hindi = 24,56% Variasi tertinggi ada di bidang ekonomi. Dan variasi terendah ada di matematika. Jawabankoefisien variansinya adalah 32,6%.koefisien variansinya adalah 32,6%.PembahasanIngat kembali rumus koefisien variasi. KV ​ = ​ x S ​ â‹… 100% ​ Menentukan rata-rata terlebih dahulu. x x x ​ = = = ​ n x 1 ​ + x 2 ​ + ... + x n ​ ​ 5 7 + 12 + 6 + 10 + 5 ​ 8 ​ Kemudian menentukan simpangan baku. S S S S S ​ = = = = = ​ n ∠​ x i ​ − x ​ ​ 5 7 − 8 2 + 12 − 8 2 + 6 − 8 2 + 10 − 8 2 + 5 − 8 2 ​ ​ 5 − 1 2 + 4 2 + − 2 2 + 2 2 + − 3 2 ​ ​ 5 1 + 16 + 4 + 4 + 9 ​ ​ 2 , 608 ​ Sehingga, diperoleh koefisien variasi KV ​ = = ​ 8 2 , 608 ​ â‹… 100% 32 , 6% ​ Jadi, koefisien variansinya adalah 32,6%.Ingat kembali rumus koefisien variasi. Menentukan rata-rata terlebih dahulu. Kemudian menentukan simpangan baku. Sehingga, diperoleh koefisien variasi Jadi, koefisien variansinya adalah 32,6%. MatematikaSTATISTIKA Kelas 12 SMAStatistika WajibRagamRagamStatistika WajibSTATISTIKAMatematikaRekomendasi video solusi lainnya0148Diketahui data 2,6,7,1,4. Varians data tersebut adalah .... 0314Hasil ulangan matematika sekelompok siswa disajikan pada ...0148Ragam dari data 30, 40, 60, 70, 50 adalah ...0243Tentukan simpangan rata-rata dan simpangan baku data beri...Teks videojika diketahui soal seperti ini maka penyelesaiannya adalah terlebih dahulu kita harus memahami rumus dari variasi yaitu 1 N dari Sigma dari X dikurang rata-rata kuadrat nilainya dikodekan maka nilai rumus rata-rata adalah 1 per n dikali Sigma X maka kita dapat mencari nilai rata-ratanya terlebih dahulu yaitu 15 karena jumlah sukunya 50 + 8 + 6 + 14 + 12 Maka hasilnya menjadi 1 per 5 dikali dengan 50 = 10 maka rata-ratanya adalah 10 lalu kita anterin variansinya1 per 5 karena juga suhunya 5 dan X dengan 10 dikurang 10 kuadrat ditambah 8 dikurang 10 ditambah 6 dikurang 10 kuadrat ditambah 14 dikurang 10 kuadrat ditambah 12 dikurang 10 kuadrat maka hasilnya menjadi 1 per 5 dikali dengan 0 + 2 kuadrat 4 + 16 + 16 + 4 Maka hasilnya menjadi 40 dengan 5 menjadi 8 maka jawabannya adalah yang sekian sampai jumpa di selanjutnya

koefisien variasi dari data 6 10 6 10 adalah